Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Neurol ; 23(5): 487-499, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631765

RESUMO

BACKGROUND: Pick's disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. Pick's disease is pathologically defined by the presence in the frontal and temporal lobes of Pick bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies (eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick's disease risk, age at onset, and disease duration. METHODS: In this genetic association study, we used data from the Pick's disease International Consortium, which we established to enable collection of data from individuals with pathologically confirmed Pick's disease worldwide. For this analysis, we collected brain samples from individuals with pathologically confirmed Pick's disease from 35 sites (brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined (rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT variants and MAPT haplotypes with Pick's disease risk, age at onset, and disease duration were examined using logistic and linear regression models; odds ratios (ORs) and ß coefficients were estimated and correspond to each additional minor allele or each additional copy of the given haplotype. FINDINGS: We obtained brain samples from 338 people with pathologically confirmed Pick's disease (205 [61%] male and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 1312 [100%] White). The MAPT H2 haplotype was associated with increased risk of Pick's disease compared with the H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (ß -0·54 [95% CI -1·94 to 0·87], p=0·45) or disease duration (ß 0·05 [-0·06 to 0·16], p=0·35). Although not significant after correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick's disease for the H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (ß 2·66 [0·63 to 4·70], p=0·011), H1i (ß -3·66 [-6·83 to -0·48], p=0·025), and H1u (ß -5·25 [-10·42 to -0·07], p=0·048); and with disease duration for H1x (ß -0·57 [-1·07 to -0·07], p=0·026). INTERPRETATION: The Pick's disease International Consortium provides an opportunity to do large studies to enhance our understanding of the pathobiology of Pick's disease. This study shows that, in contrast to the decreased risk of four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick's disease in people of European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies. FUNDING: Wellcome Trust, Rotha Abraham Trust, Brain Research UK, the Dolby Fund, Dementia Research Institute (Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.


Assuntos
Doença de Pick , Tauopatias , Masculino , Humanos , Feminino , Proteínas tau/metabolismo , Doença de Pick/genética , Haplótipos , Estudos de Associação Genética
2.
Adv Sci (Weinh) ; 11(16): e2303775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38327094

RESUMO

The spread of prion-like protein aggregates is a common driver of pathogenesis in various neurodegenerative diseases, including Alzheimer's disease (AD) and related Tauopathies. Tau pathologies exhibit a clear progressive spreading pattern that correlates with disease severity. Clinical observation combined with complementary experimental studies has shown that Tau preformed fibrils (PFF) are prion-like seeds that propagate pathology by entering cells and templating misfolding and aggregation of endogenous Tau. While several cell surface receptors of Tau are known, they are not specific to the fibrillar form of Tau. Moreover, the underlying cellular mechanisms of Tau PFF spreading remain poorly understood. Here, it is shown that the lymphocyte-activation gene 3 (Lag3) is a cell surface receptor that binds to PFF but not the monomer of Tau. Deletion of Lag3 or inhibition of Lag3 in primary cortical neurons significantly reduces the internalization of Tau PFF and subsequent Tau propagation and neuron-to-neuron transmission. Propagation of Tau pathology and behavioral deficits induced by injection of Tau PFF in the hippocampus and overlying cortex are attenuated in mice lacking Lag3 selectively in neurons. These results identify neuronal Lag3 as a receptor of pathologic Tau in the brain,and for AD and related Tauopathies, a therapeutic target.


Assuntos
Proteína do Gene 3 de Ativação de Linfócitos , Neurônios , Tauopatias , Proteínas tau , Animais , Proteínas tau/metabolismo , Proteínas tau/genética , Camundongos , Neurônios/metabolismo , Tauopatias/metabolismo , Tauopatias/genética , Tauopatias/patologia , Modelos Animais de Doenças , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Humanos , Antígenos CD/metabolismo , Antígenos CD/genética
3.
J Forensic Sci ; 69(2): 718-724, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317612

RESUMO

Fat embolism syndrome (FES) is a potentially life-threatening condition that develops when fat embolism leads to clinical symptoms and multisystem dysfunction. The classic triad of respiratory distress, neurologic symptoms, and petechial rash are non-specific, and the lack of specific laboratory tests makes the diagnosis of FES difficult. Although FES is most common after long bone fractures, multiple conditions some of which are atraumatic have been associated with the development of FES. We report a case of FES that occurred in the setting of a non-traumatic compartment syndrome of the upper extremities. The pathologic and clinical findings, pathophysiology, diagnostic challenges, and pathologic methods to properly diagnose FES are discussed with a review of the relevant literature. This case highlights the importance of the autopsy in making a diagnosis of FES in cases where death could otherwise be incorrectly attributed to multi-organ system failure, shock, or sepsis.


Assuntos
Síndromes Compartimentais , Embolia Gordurosa , Fraturas Ósseas , Humanos , Fraturas Ósseas/complicações , Síndromes Compartimentais/complicações , Embolia Gordurosa/etiologia , Insuficiência de Múltiplos Órgãos/etiologia , Autopsia
4.
medRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398476

RESUMO

Neuroinflammation through enhanced innate immunity is thought play a role in the pathogenesis of Parkinson's disease (PD). Methods for monitoring neuroinflammation in living patients with PD are currently limited to positron emission tomography (PET) ligands that lack specificity in labeling immune cells in the nervous system. The colony stimulating factor 1 receptor (CSF1R) plays a crucial role in microglial function, an important cellular contributor to the nervous system's innate immune response. Using immunologic methods, we show that CSF1R in human brain is colocalized with the microglial marker, ionized calcium binding adaptor molecule 1 (Iba1). In PD, CSF1R immunoreactivity is significantly increased in PD across multiple brain regions, with the largest differences in the midbrain versus controls. Autoradiography revealed significantly increased [3H]JHU11761 binding in the inferior parietal cortex of PD patients. PET imaging demonstrated that higher [11C]CPPC binding in the striatum was associated with greater motor disability in PD. Furthermore, increased [11C]CPPC binding in various regions correlated with more severe motor disability and poorer verbal fluency. This study finds that CSF1R expression is elevated in PD and that [11C]CPPC-PET imaging of CSF1R is indicative of motor and cognitive impairments in the early stages of the disease. Moreover, the study underscores the significance of CSF1R as a promising biomarker for neuroinflammation in Parkinson's disease, suggesting its potential use for non-invasive assessment of disease progression and severity, leading to earlier diagnosis and targeted interventions.

5.
Interdiscip Med ; 1(4): e20230016, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38089920

RESUMO

Extracellular vesicles (EVs) are released from different cell types in the central nervous system (CNS) and play roles in regulating physiological and pathological functions. Although brain-derived EVs (bdEVs) have been successfully collected from brain tissue, there is not yet a "bdEV Atlas" of EVs from different brain regions. To address this gap, we separated EVs from eight anatomical brain regions of a single individual and subsequently characterized them by count, size, morphology, and protein and RNA content. The greatest particle yield was from cerebellum, while the fewest particles were recovered from the orbitofrontal, postcentral gyrus, and thalamus regions. EV surface phenotyping indicated that CD81 and CD9 were more abundant than CD63 in all regions. Cell-enriched surface markers varied between brain regions. For example, putative neuronal markers NCAM, CD271, and NRCAM were more abundant in medulla, cerebellum, and occipital regions, respectively. These findings, while restricted to tissues from a single individual, suggest that additional studies are warranted to provide more insight into the links between EV heterogeneity and function in the CNS.

6.
Acta Neuropathol ; 147(1): 4, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133681

RESUMO

LATE-NC, the neuropathologic changes of limbic-predominant age-related TAR DNA-binding protein 43 kDa (TDP-43) encephalopathy are frequently associated with Alzheimer's disease (AD) and cognitive impairment in older adults. The association of TDP-43 proteinopathy with AD neuropathologic changes (ADNC) and its impact on specific cognitive domains are not fully understood and whether loss of TDP-43 function occurs early in the aging brain remains unknown. Here, using a large set of autopsies from the Baltimore Longitudinal Study of Aging (BLSA) and another younger cohort, we were able to study brains from subjects 21-109 years of age. Examination of these brains show that loss of TDP-43 splicing repression, as judged by TDP-43 nuclear clearance and expression of a cryptic exon in HDGFL2, first occurs during the 6th decade, preceding by a decade the appearance of TDP-43+ neuronal cytoplasmic inclusions (NCIs). We corroborated this observation using a monoclonal antibody to demonstrate a cryptic exon-encoded neoepitope within HDGFL2 in neurons exhibiting nuclear clearance of TDP-43. TDP-43 nuclear clearance is associated with increased burden of tau pathology. Age at death, female sex, high CERAD neuritic plaque score, and high Braak neurofibrillary stage significantly increase the odds of LATE-NC. Faster rates of cognitive decline on verbal memory (California Verbal Learning Test immediate recall), visuospatial ability (Card Rotations Test), mental status (MMSE) and semantic fluency (Category Fluency Test) were associated with LATE-NC. Notably, the effects of LATE-NC on verbal memory and visuospatial ability are independent of ADNC. However, the effects of TDP-43 nuclear clearance in absence of NCI on the longitudinal trajectories and levels of cognitive measures are not significant. These results establish that loss of TDP-43 splicing repression is an early event occurring in the aging population during the development of TDP-43 proteinopathy and is associated with increased tau pathology. Furthermore, LATE-NC correlates with high levels of ADNC but also has an impact on specific memory and visuospatial functions in aging that is independent of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Proteinopatias TDP-43 , Humanos , Feminino , Idoso , Doença de Alzheimer/patologia , Estudos Longitudinais , Proteinopatias TDP-43/patologia , Envelhecimento/genética , Disfunção Cognitiva/genética , Disfunção Cognitiva/complicações , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
7.
Sci Transl Med ; 15(724): eadd0499, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019930

RESUMO

Pathologic α-synuclein plays an important role in the pathogenesis of α-synucleinopathies such as Parkinson's disease (PD). Disruption of proteostasis is thought to be central to pathologic α-synuclein toxicity; however, the molecular mechanism of this deregulation is poorly understood. Complementary proteomic approaches in cellular and animal models of PD were used to identify and characterize the pathologic α-synuclein interactome. We report that the highest biological processes that interacted with pathologic α-synuclein in mice included RNA processing and translation initiation. Regulation of catabolic processes that include autophagy were also identified. Pathologic α-synuclein was found to bind with the tuberous sclerosis protein 2 (TSC2) and to trigger the activation of the mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which augmented mRNA translation and protein synthesis, leading to neurodegeneration. Genetic and pharmacologic inhibition of mTOR and protein synthesis rescued the dopamine neuron loss, behavioral deficits, and aberrant biochemical signaling in the α-synuclein preformed fibril mouse model and Drosophila transgenic models of pathologic α-synuclein-induced degeneration. Pathologic α-synuclein furthermore led to a destabilization of the TSC1-TSC2 complex, which plays an important role in mTORC1 activity. Constitutive overexpression of TSC2 rescued motor deficits and neuropathology in α-synuclein flies. Biochemical examination of PD postmortem brain tissues also suggested deregulated mTORC1 signaling. These findings establish a connection between mRNA translation deregulation and mTORC1 pathway activation that is induced by pathologic α-synuclein in cellular and animal models of PD.


Assuntos
Doença de Parkinson , Animais , Camundongos , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Doença de Parkinson/metabolismo , Proteômica , Serina-Treonina Quinases TOR
8.
J Alzheimers Dis ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37781809

RESUMO

BACKGROUND: Extracellular vesicles (EVs) and non-coding RNAs (ncRNAs) are emerging contributors to Alzheimer's disease (AD) pathophysiology. Differential abundance of ncRNAs carried by EVs may provide valuable insights into underlying disease mechanisms. Brain tissue-derived EVs (bdEVs) are particularly relevant, as they may offer valuable insights about the tissue of origin. However, there is limited research on diverse ncRNA species in bdEVs in AD. OBJECTIVE: This study explored whether the non-coding RNA composition of EVs isolated from post-mortem brain tissue is related to AD pathogenesis. METHODS: bdEVs from age-matched late-stage AD patients (n = 23) and controls (n = 10) that had been separated and characterized in our previous study were used for RNA extraction, small RNA sequencing, and qPCR verification. RESULTS: Significant differences of non-coding RNAs between AD and controls were found, especially for miRNAs and tRNAs. AD pathology-related miRNA and tRNA differences of bdEVs partially matched expression differences in source brain tissues. AD pathology had a more prominent association than biological sex with bdEV miRNA and tRNA components in late-stage AD brains. CONCLUSIONS: Our study provides further evidence that EV non-coding RNAs from human brain tissue, including but not limited to miRNAs, may be altered and contribute to AD pathogenesis.

9.
medRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37745408

RESUMO

Background: Tau pathology is common in age-related neurodegenerative diseases. Tau pathology in primary age-related tauopathy (PART) and in Alzheimer's disease (AD) has a similar biochemical structure and anatomic distribution, which is distinct from tau pathology in other diseases. However, the molecular changes associated with intraneuronal tau pathology in PART and AD, and whether these changes are similar in the two diseases, is largely unexplored. Methods: Using GeoMx spatial transcriptomics, mRNA was quantified in CA1 pyramidal neurons with tau pathology and adjacent neurons without tau pathology in 6 cases of PART and 6 cases of AD, and compared to 4 control cases without pathology. Transcriptional changes were analyzed for differential gene expression and for coordinated patterns of gene expression associated with both disease state and intraneuronal tau pathology. Results: Synaptic gene changes and two novel gene expression signatures associated with intraneuronal tau were identified in PART and AD. Overall, gene expression changes associated with intraneuronal tau pathology were similar in PART and AD. Synaptic gene expression was decreased overall in neurons in AD and PART compared to control cases. However, this decrease was largely driven by neurons lacking tau pathology. Synaptic gene expression was increased in tau-positive neurons compared to tau-negative neurons in disease. Two novel gene expression signatures associated with intraneuronal tau were identified by examining coordinated patterns of gene expression. Genes in the up-regulated expression pattern were enriched in calcium regulation and synaptic function pathways, specifically in synaptic exocytosis. These synaptic gene changes and intraneuronal tau expression signatures were confirmed in a published transcriptional dataset of cortical neurons with tau pathology in AD. Conclusions: PART and AD show similar transcriptional changes associated with intraneuronal tau pathology in CA1 pyramidal neurons, raising the possibility of a mechanistic relationship between the tau pathology in the two diseases. Intraneuronal tau pathology was also associated with increased expression of genes associated with synaptic function and calcium regulation compared to tau-negative disease neurons. The findings highlight the power of molecular analysis stratified by pathology in neurodegenerative disease and provide novel insight into common molecular pathways associated with intraneuronal tau in PART and AD.

10.
J Neuropathol Exp Neurol ; 82(10): 836-844, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37595576

RESUMO

Primary age-related tauopathy (PART) is characterized by aggregation of tau in the mesial temporal lobe in older individuals. High pathologic tau stage (Braak stage) or a high burden of hippocampal tau pathology has been associated with cognitive impairment in PART. However, the potential underlying mechanisms are not well understood. Cognitive impairment in many neurodegenerative diseases correlates with synaptic loss, raising the question of whether synaptic loss also occurs in PART. To address this, we investigated synaptic changes associated with tau Braak stage and high tau pathology burden in PART using synaptophysin and phospho-tau immunofluorescence. We compared 12 cases of definite PART with 6 controls and 6 Alzheimer disease cases. In this study, the hippocampal CA2 region showed loss of synaptophysin puncta and intensity in cases of PART with either a high stage (Braak IV) or a high burden of neuritic tau pathology. There was also loss of synaptophysin intensity in CA3 associated with a high stage or high burden of tau pathology. Loss of synaptophysin was present in Alzheimer disease, but the pattern appeared distinct. These novel findings suggest the presence of synaptic loss associated with either a high hippocampal tau burden or a Braak stage IV in PART.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Idoso , Doença de Alzheimer/patologia , Sinaptofisina , Proteínas tau/metabolismo , Tauopatias/patologia , Hipocampo/patologia
11.
bioRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546928

RESUMO

Asymptomatic Alzheimer's disease (AsymAD) describes the status of subjects with preserved cognition but with identifiable Alzheimer's disease (AD) brain pathology (i.e. Aß-amyloid deposits, neuritic plaques, and neurofibrillary tangles) at autopsy. In this study, we investigated the postmortem brains of a cohort of AsymAD cases to gain insight into the underlying mechanisms of resilience to AD pathology and cognitive decline. Our results showed that AsymAD cases exhibit an enrichment of core plaques and decreased filamentous plaque accumulation, as well as an increase in microglia surrounding this last type. In AsymAD cases we found less pathological tau aggregation in dystrophic neurites compared to AD and tau seeding activity comparable to healthy control subjects. We used spatial transcriptomics to further characterize the plaque niche and found autophagy, endocytosis, and phagocytosis within the top upregulated pathways in the AsymAD plaque niche, but not in AD. Furthermore, we found ARP2, an actin-based motility protein crucial to initiate the formation of new actin filaments, increased within microglia in the proximity of amyloid plaques in AsymAD. Our findings support that the amyloid-plaque microenvironment in AsymAD cases is characterized by microglia with highly efficient actin-based cell motility mechanisms and decreased tau seeding compared to AD. These two mechanisms can potentially provide protection against the toxic cascade initiated by Aß that preserves brain health and slows down the progression of AD pathology.

12.
bioRxiv ; 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37214955

RESUMO

Extracellular vesicles (EVs) are released from different cell types in the central nervous system (CNS) and play roles in regulating physiological and pathological functions. Although brain-derived EVs (bdEVs) have been successfully collected from brain tissue, there is not yet a "bdEV atlas" of EVs from different brain regions. To address this gap, we separated EVs from eight anatomical brain regions of a single individual and subsequently characterized them by count, size, morphology, and protein and RNA content. The greatest particle yield was from cerebellum, while the fewest particles were recovered from the orbitofrontal, postcentral gyrus, and thalamus regions. EV surface phenotyping indicated that CD81 and CD9 were more abundant than CD63 for all regions. Cell-enriched surface markers varied between brain regions. For example, putative neuronal markers NCAM, CD271, and NRCAM were more abundant in medulla, cerebellum, and occipital regions, respectively. These findings, while restricted to tissues from a single individual, suggest that additional studies are merited to lend more insight into the links between EV heterogeneity and function in the CNS.

13.
medRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36865237

RESUMO

Primary Age-Related Tauopathy (PART) is characterized by the aggregation of tau in the mesial temporal lobe in older individuals. High pathologic tau stage (Braak stage) or a high burden of hippocampal tau pathology have been associated with cognitive impairment in PART. However, the underlying mechanisms of cognitive impairment in PART are not well understood. Cognitive impairment in many neurodegenerative diseases correlates with synaptic loss, raising the question of whether synaptic loss occurs in PART. To address this, we investigated synaptic changes associated with tau Braak stage and a high tau pathology burden in PART using synaptophysin and phospho-tau immunofluorescence. We compared twelve cases of definite PART with six young controls and six Alzheimer's disease cases. In this study, we identified loss of synaptophysin puncta and intensity in the CA2 region of the hippocampus in cases of PART with either a high stage (Braak IV) or a high burden of neuritic tau pathology. There was also loss of synaptophysin intensity in CA3 associated with a high stage or high burden of tau pathology. Loss of synaptophysin signal was present in AD, but the pattern was distinct from that seen in PART. These novel findings suggest the presence of synaptic loss in PART associated with either a high hippocampal tau burden or a Braak stage IV. These synaptic changes raise the possibility that synaptic loss in PART could contribute to cognitive impairment, though future studies including cognitive assessments are needed to address this question.

14.
Biol Psychiatry ; 94(9): 706-720, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796600

RESUMO

BACKGROUND: Memory deficits are central to many neuropsychiatric diseases. During acquisition of new information, memories can become vulnerable to interference, yet mechanisms that underlie interference are unknown. METHODS: We describe a novel transduction pathway that links the NMDA receptor (NMDAR) to AKT signaling via the immediate early gene Arc and evaluate its role in memory. The signaling pathway is validated using biochemical tools and transgenic mice, and function is evaluated in assays of synaptic plasticity and behavior. The translational relevance is evaluated in human postmortem brain. RESULTS: Arc is dynamically phosphorylated by CaMKII (calcium/calmodulin-dependent protein kinase II) and binds the NMDAR subunits NR2A/NR2B and a previously unstudied PI3K (phosphoinositide 3-kinase) adapter p55PIK (PIK3R3) in vivo in response to novelty or tetanic stimulation in acute slices. NMDAR-Arc-p55PIK recruits p110α PI3K and mTORC2 (mechanistic target of rapamycin complex 2) to activate AKT. NMDAR-Arc-p55PIK-PI3K-mTORC2-AKT assembly occurs within minutes of exploratory behavior and localizes to sparse synapses throughout hippocampal and cortical regions. Studies using conditional (Nestin-Cre) p55PIK deletion mice indicate that NMDAR-Arc-p55PIK-PI3K-mTORC2-AKT functions to inhibit GSK3 and mediates input-specific metaplasticity that protects potentiated synapses from subsequent depotentiation. p55PIK conditional knockout mice perform normally in multiple behaviors including working memory and long-term memory tasks but exhibit deficits indicative of increased vulnerability to interference in both short-term and long-term paradigms. The NMDAR-AKT transduction complex is reduced in postmortem brain of individuals with early Alzheimer's disease. CONCLUSIONS: A novel function of Arc mediates synapse-specific NMDAR-AKT signaling and metaplasticity that contributes to memory updating and is disrupted in human cognitive disease.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Transdução de Sinais , Hipocampo/metabolismo , Camundongos Transgênicos , Camundongos Knockout , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo
15.
Clin Transl Med ; 12(11): e1076, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36354133

RESUMO

BACKGROUND: Progressive supranuclear palsy (PSP) is a neurodegenerative disorder clinically characterized by progressive postural instability, supranuclear gaze palsy, parkinsonism, and cognitive decline caused by degeneration in specific areas of the brain including globus pallidus (GP), substantia nigra, and subthalamic nucleus. However, the pathogenetic mechanism of PSP remains unclear to date.Unbiased global proteome analysis of patients' brain samples is an important step toward understanding PSP pathogenesis, as proteins serve as workhorses and building blocks of the cell. METHODS: In this study, we conducted unbiased mass spectrometry-based global proteome analysis of GP samples from 15 PSP patients, 15 Parkinson disease (PD) patients, and 15 healthy control (HC) individuals. To analyze 45 samples, we conducted 5 batches of 11-plex isobaric tandem mass tag (TMT)-based multiplexing experiments. The identified proteins were subjected to statistical analysis, such as a permutation-based statistical analysis in the significance analysis of microarray (SAM) method and bootstrap receiver operating characteristic curve (ROC)-based statistical analysis. Subsequently, we conducted bioinformatics analyses using gene set enrichment analysis, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) protein-protein interaction (PPI) analysis, and weighted gene co-expression network analysis (WGCNA). RESULTS: We have identified 10,231 proteins with ∼1,000 differentially expressed proteins. The gene set enrichment analysis results showed that the PD pathway was the most highly enriched, followed by pathways for oxidative phosphorylation, Alzheimer disease, Huntington disease, and non-alcoholic fatty liver disease (NAFLD) when PSP was compared to HC or PD. Most of the proteins enriched in the gene set enrichment analysis were mitochondrial proteins such as cytochrome c oxidase, NADH dehydrogenase, acyl carrier protein, succinate dehydrogenase, ADP/ATP translocase, cytochrome b-c1 complex, and/or ATP synthase. Strikingly, all of the enriched mitochondrial proteins in the PD pathway were downregulated in PSP compared to both HC and PD. The subsequent STRING PPI analysis and the WGCNA further supported that the mitochondrial proteins were the most highly enriched in PSP. CONCLUSION: Our study showed that the mitochondrial respiratory electron transport chain complex was the key proteins that were dysregulated in GP of PSP, suggesting that the mitochondrial respiratory electron transport chain complex could potentially be involved in the pathogenesis of PSP. This is the first global proteome analysis of human GP from PSP patients, and this study paves the way to understanding the mechanistic pathogenesis of PSP.


Assuntos
Doença de Parkinson , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia , Globo Pálido/metabolismo , Globo Pálido/patologia , Proteômica , Proteoma/genética , Proteoma/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Espectrometria de Massas , Proteínas Mitocondriais/metabolismo
16.
Nat Neurosci ; 25(12): 1597-1607, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344699

RESUMO

Tau aggregation is a defining histopathological feature of Alzheimer's disease and other tauopathies. However, the cellular mechanisms involved in tau propagation remain unclear. Here, we performed an unbiased quantitative proteomic study to identify proteins that specifically interact with this tau seed. We identified Bassoon (BSN), a presynaptic scaffolding protein, as an interactor of the tau seed isolated from a mouse model of tauopathy, and from Alzheimer's disease and progressive supranuclear palsy postmortem samples. We show that BSN exacerbates tau seeding and toxicity in both mouse and Drosophila models for tauopathy, and that BSN downregulation decreases tau spreading and overall disease pathology, rescuing synaptic and behavioral impairments and reducing brain atrophy. Our findings improve the understanding of how tau seeds can be stabilized by interactors such as BSN. Inhibiting tau-seed interactions is a potential new therapeutic approach for neurodegenerative tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Camundongos , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Proteômica , Encéfalo/metabolismo , Tauopatias/metabolismo
17.
Neurol Genet ; 8(6): e200026, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36405397

RESUMO

Background and Objectives: Variants of the apolipoprotein E (APOE) gene are the greatest known risk factors for sporadic Alzheimer disease (AD). Three major APOE isoform alleles, ε2, ε3, and ε4, encode and produce proteins that differ by only 1-2 amino acids but have different binding partner interactions. Whereas APOE ε2 is protective against AD relative to ε3, ε4 is associated with an increased risk for AD development. However, the role of APOE in gene regulation in AD pathogenesis has remained largely undetermined. Extracellular vesicles (EVs) are lipid bilayer-delimited particles released by cells to dispose of unwanted materials and mediate intercellular communication, and they are implicated in AD pathophysiology. Brain-derived EVs (bdEVs) could act locally in the tissue and reflect cellular changes. To reveal whether APOE genotype affects EV components in AD brains, bdEVs were separated from patients with AD with different APOE genotypes for parallel small RNA and protein profile. Methods: bdEVs from late-stage AD brains (BRAAK stages 5-6) from patients with APOE genotypes ε2/3 (n = 5), ε3/3 (n = 5), ε3/4 (n = 6), and ε4/4 (n = 6) were separated using our published protocol into a 10,000g pelleted extracellular fraction (10K) and a further purified EV fraction. Counting, sizing, and multiomic characterization by small RNA sequencing and proteomic analysis were performed for 10K, EVs, and source tissue. Results: Comparing APOE genotypes, no significant differences in bdEV total particle concentration or morphology were observed. Overall small RNA and protein profiles of 10K, EVs, and source tissue also did not differ substantially between different APOE genotypes. However, several differences in individual RNAs (including miRNAs and tRNAs) and proteins in 10K and EVs were observed when comparing the highest and lowest risk groups (ε4/4 and ε2/3). Bioinformatic analysis and previous publications indicate a potential regulatory role of these molecules in AD. Discussion: For patients with late-stage AD in this study, only a few moderate differences were observed for small RNA and protein profiles between APOE genotypes. Among these, several newly identified 10K and EV-associated molecules may play roles in AD progression. Possibly, larger genotype-related differences exist and are more apparent in or before earlier disease stages.

18.
Acta Neuropathol Commun ; 10(1): 164, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376970

RESUMO

Several neurodegenerative pathologies can clinically mimic Parkinson's disease, including neurodegenerative diseases with glial pathology. However, the glial aggregates are typically composed of known pathogenic proteins and are associated with prominent neuronal loss in the substantia nigra. Here we present an unusual case of a 91-year-old man with a clinical diagnosis of Parkinson's disease, but whose autopsy findings showed a ubiquitin-positive astrogliopathy without significant neuronal loss in the substantia nigra. These glial aggregates affected the basal ganglia, cortex, and cerebellum, and were negative for tau, alpha-synuclein, TDP-43, FUS, and p62. This case is a rare example of an unknown glial neurodegenerative pathology mimicking Parkinson's disease without significant loss of nigral dopaminergic neurons.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Masculino , Idoso de 80 Anos ou mais , Doença de Parkinson/patologia , Ubiquitina/metabolismo , alfa-Sinucleína/metabolismo , Substância Negra/metabolismo , Doenças Neurodegenerativas/patologia , Neuroglia/patologia
19.
Sci Adv ; 8(13): eabh1824, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35363524

RESUMO

Mutations in PINK1 and parkin highlight the mitochondrial axis of Parkinson's disease (PD) pathogenesis. PINK1/parkin regulation of the transcriptional repressor PARIS bears direct relevance to dopamine neuron survival through augmentation of PGC-1α-dependent mitochondrial biogenesis. Notably, knockout of PARIS attenuates dopaminergic neurodegeneration in mouse models, indicating that interventions that prevent dopaminergic accumulation of PARIS could have therapeutic potential in PD. To this end, we have identified the deubiquitinase cylindromatosis (CYLD) to be a regulator of PARIS protein stability and proteasomal degradation via the PINK1/parkin pathway. Knockdown of CYLD in multiple models of PINK1 or parkin inactivation attenuates PARIS accumulation by modulating its ubiquitination levels and relieving its repressive effect on PGC-1α to promote mitochondrial biogenesis. Together, our studies identify CYLD as a negative regulator of dopamine neuron survival, and inhibition of CYLD may potentially be beneficial in PD by lowering PARIS levels and promoting mitochondrial biogenesis.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Animais , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Enzimas Desubiquitinantes/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Ubiquitinação
20.
Commun Biol ; 5(1): 282, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351973

RESUMO

Reactive astrogliosis is a universal response of astrocytes to abnormal events and injuries. Studies have shown that proinflammatory microglia can polarize astrocytes (designated A1 astrocytes) toward a neurotoxic phenotype characterized by increased Complement Component 3 (C3) expression. It is still unclear if inflammatory stimuli from other cell types may also be capable of inducing a subset of C3+ neurotoxic astrocytes. Here, we show that a subtype of C3+ neurotoxic astrocytes is induced by activated endothelial cells that is distinct from astrocytes activated by microglia. Furthermore, we show that endothelial-induced astrocytes have upregulated expression of A1 astrocytic genes and exhibit a distinctive extracellular matrix remodeling profile. Finally, we demonstrate that endothelial-induced astrocytes are Decorin-positive and are associated with vascular amyloid deposits but not parenchymal amyloid plaques in mouse models and AD/CAA patients. These findings demonstrate the existence of potentially extensive and subtle functional diversity of C3+-reactive astrocytes.


Assuntos
Astrócitos , Células Endoteliais , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Microglia/metabolismo , Placa Amiloide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...